This result showed clearly that one function of the corpus callosum is to connect cells so that their fields can span the midline. It therefore cements together the two halves of the visual world. To imagine this more vividly, suppose that our cortex had originally been constructed out of one piece instead of being subdivided into two hemispheres; area 17 would then be one large plate, mapping the entire visual field. Neighboring cells would of course be richly interconnected, so as to produce the various response properties, including movement responses and orientation selectivity. Now suppose a dictator (the deity, evolution, or whatever) decides this will no longer do: half the cells must henceforth go to one hemisphere and half to the other. What to do about all those rich connections between the cells that must now be pulled apart? The connections, we suppose, are simply dragged across and form part of the corpus callosum. To avoid delays in having the signals travel so great a distance (in humans, perhaps 5 to 6 inches) we speed conduction by putting a myelin coating on the axons. Of course, in evolution nothing like this ever really happened, since the brain had two hemispheres long before the cerebral cortex evolved. This experiment of Berlucchi and Rizzolatti provides the most vivid example I know of the remarkable specificity of neural connections. The cell illustrated to the left, and presumably a million other callosally connected cells like it, derives a single orientation selectivity both through local connections to nearby cells and through connections coming from a region of cortex in the other hemisphere, several inches away, from cells with the same orientation selectivity and immediately adjacent receptive-field positions--to say nothing of all the other matching attributes, such as direction selectivity, end-stopping, and degree of complexity. Every callosally connected cell in the visual cortex must get its input from cells in the opposite hemisphere with exactly matching properties. We have all kinds of evidence for such selective connectivity in the nervous system, but I can think of none that is so beautifully direct.